Moscow Mathematical Journal
Volume 21, Issue 1, January–March 2021 pp. 129–173.
Bounds for Multivariate Residues and for the Polynomials in the Elimination Theorem
We present several upper bounds for the height of global residues of
rational forms on an affine variety defined over $\mathbb{Q}$. As an
application, we deduce upper bounds for the height of the
coefficients in the Bergman–Weil trace formula. We also present upper bounds for the degree and the height of the
polynomials in the elimination theorem on an affine variety defined
over $\mathbb{Q}$. This is an arithmetic analogue of Jelonek's effective
elimination theorem, and it plays a crucial role in the proof of our
bounds for the height of global residues. 2010 Math. Subj. Class. Primary: 32A27; Secondary: 11G50, 14Q20.
Authors:
Martín Sombra (1) and Alain Yger (2)
Author institution:(1) Institució Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys 23, 08010 Barcelona, Spain
Departament de Matemàiques i Informàtica, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain
(2) Institut de Mathématiques, Université de Bordeaux. 351 cours de la Libération, 33405 Talence, France
Summary:
Keywords: Residues, membership problems, height.
Contents
Full-Text PDF