Moscow Mathematical Journal
Volume 24, Issue 1, January–March 2024 pp. 1–19.
On Radius of Convergence of $q$-Deformed Real Numbers
We study analytic properties of “$q$-deformed real numbers”, a
notion recently introduced by two of us. A $q$-deformed positive
real number is a power series with integer coefficients in one
formal variable $q$. We study the radius of convergence of these
power series assuming that $q$ is a complex variable. Our main
conjecture, which can be viewed as a $q$-analogue of Hurwitz's
Irrational Number Theorem, claims that the $q$-deformed golden ratio
has the smallest radius of convergence among all real numbers. The
conjecture is proved for certain class of rational numbers and
confirmed by a number of computer experiments. We also prove the
explicit lower bounds for the radius of convergence for the
$q$-deformed convergents of golden and silver ratios. 2020 Math. Subj. Class. 11A55, 05A30, 30B10.
Authors:
Ludivine Leclere (1), Sophie Morier-Genoud (2), Valentin Ovsienko (3), and Alexander Veselov (4)
Author institution:(1) Laboratoire de Mathématiques, Université de Reims, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France
(2) Laboratoire de Mathématiques, Université de Reims, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France
(3) Centre National de la Recherche Scientifique, Laboratoire de Mathématiques, Université de Reims, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France
(4) Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
Summary:
Keywords: $q$-deformations, modular group, radius of convergence.
Contents
Full-Text PDF