Moscow Mathematical Journal
Volume 20, Issue 3, July–September 2020 pp. 441–451.
A Generalization of the Fejér–Jackson Inequality and Related Results
Authors:
Horst Alzer (1) and Man Kam Kwong (2)
Author institution:(1) Morsbacher Straße 10, 51545 Waldbröl, Germany
(2) Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
Summary:
We present several results for trigonometric sums related to the classical Fejér–Jackson inequality, namely, 0<n∑k=1sin(kx)k(n≥1,0<x<π). Among these are:
1. Let r∈R. Then, 0<n∑k=1koddsin(kx)krk holds for all n≥1 and x∈(0,π) if and only if r∈(0,1].
2. Let a∈R. Then, 0< \sum\limits_{k=0}^{n-1} \cos(kx) \biggl( \sum\limits_{j=k+1}^n {j\choose k} \frac{\sin((j-k)x)}{j} \, a^j \biggr) holds for all n\geq 1 and x\in (0,\pi) if and only if a\in (0,1/2]. For a=1/2 , the result reduces to that of Fejér–Jackson.
3. Let b\in \mathbb{R}. Then, 0< \sum\limits_{k=0}^{n-1} \cos(kx) \biggl( \sum\limits_{\substack{j=k+1 \\ j \,\text{odd}}}^n {j\choose k} \frac{\sin((j-k)x)}{j} \, b^j \biggr) holds for all n\geq 1 and x\in (0,\pi) if and only if b\in (0,1/2]. An analogous result holds when “odd” is replaced by “even” and (0,\pi ) by (0,\frac{\pi }{2} ) .
2010 Math. Subj. Class. 26D05, 33B10, 05A19
Keywords: Fejér–Jackson inequality, trigonometric sums, harmonic numbers, combinatorial identity.
Contents Full-Text PDF