Moscow Mathematical Journal
Volume 20, Issue 1, January–March 2020 pp. 185–210.
Nonlocal Elliptic Problems and Applications
Authors:
Veli B. Shakhmurov (1)
Author institution:(1) Department of Mechanical Engineering, Okan University, Akfirat, Tuzla 34959 Istanbul, Turkey
Summary:
In this paper, the integral boundary value problems for differential-operator equations with principal variable coefficients are studied. Several conditions for the Lp-separability are given. Moreover, the sharp coercive estimates for resolvents of corresponding differential operators are shown. It is implied that these operators are positive and also are generators of analytic semigroups. Then, the existence and uniqueness of maximal regular solution to nonlinear abstract elliptic equations is derived. In application, maximal regularity properties of the abstract parabolic equation with variable coefficients and systems of elliptic equations are derived in mixed Lp-spaces.
2010 Math. Subj. Class. 35xx, 35Kxx, 46Bxx, 47Hxx, 43Axx.
Keywords: Separable boundary value problems, equations with variable coefficients, differential-operator equation, nonlinear abstract differential equations, Abstract Sobolev spaces, well-posedness of parabolic problems
Contents Full-Text PDF