Moscow Mathematical Journal
Volume 18, Issue 4, October–December 2018 pp. 693–719.
Lagrangian Subvarieties in the Chow Ring of Some Hyperkähler Varieties
Let X be a hyperkähler variety, and let Z⊂X be a Lagrangian subvariety. Conjecturally, Z should have trivial intersection
with certain parts of the Chow ring of X. We prove this conjecture for
certain Hilbert schemes X having a Lagrangian fibration, and Z⊂X a
general fibre of the Lagrangian fibration. 2010 Math. Subj. Class. Primary: 14C15, 14C25, 14C30.
Authors:
Robert Laterveer (1)
Author institution:(1) Institut de Recherche Mathématique Avancée,
CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE
Summary:
Keywords: Algebraic cycles, Chow ring, motives, Bloch–Beilinson filtration, hyperkähler variety, Lagrangian subvariety, constant cycle subvariety, (Hilbert scheme of) K3 surface, Beauville’s splitting property, multiplicative Chow–Künneth decomposition, spread of algebraic cycles.
Contents
Full-Text PDF