Moscow Mathematical Journal
Volume 17, Issue 2, April–June 2017 pp. 175–190.
Laplace-type Integral Representations of the Generalized Bessel Function and of the Dunkl Kernel of Type B2
In this paper, we derive Laplace-type integral representations for both the generalized Bessel function and the Dunkl kernel associated with the rank two root system of type B2. The derivation of the first one elaborates on the integral representation of the generalized Bessel function proved by the second named
author through the modified Bessel function of the first kind. In particular, we recover an expression of the density of the Duistermaat–Heckman
measure for the dihedral group of order eight. As to the integral representation of the corresponding Dunkl kernel, it follows from an application of the shift principle to the generalized Bessel function. 2010 Math. Subj. Class. 22E30, 22C67, 33C80.
Authors:
Béchir Amri (1) and Nizar Demni (2)
Author institution:(1) Université Tunis El Manar, Faculté des sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, 2092 El Manar I, Tunisie
(2) IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Summary:
Keywords: Dunkl kernel, generalized Bessel function, Laplacetype integral representation, Duistermaat–Heckman measure.
Contents
Full-Text PDF