Moscow Mathematical Journal
Volume 15, Issue 2, April–June 2015 pp. 257–267.
Quasi-Coherent Hecke Category and Demazure Descent
Let G be a reductive algebraic group with a Borel subgroup
B. We define the quasi-coherent Hecke category for the pair (G, B).
For any regular Noetherian G-scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant
quasi-coherent sheaves on X. Using the action we define the Demazure
Descent Data on the latter category and prove that the Descent category
is equivalent to the derived category of G-equivariant sheaves on X. 2010 Math. Subj. Class. Primary: 14M15; Secondary: 20F55, 18E30.
Authors:
Sergey Arkhipov (1) and Tina Kanstrup
Author institution:(1) Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK-8000, Århus C, Denmark
(2) Centre for Quantum Geometry of Moduli Spaces, Aarhus Universitet, Ny Munke
gade, DK-8000, Århus C, Denmark
Summary:
Keywords: Equivariant coherent sheaves, Demazure functors, Bott–Samelson varieties
Contents
Full-Text PDF