Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of the Ramanujan Mathematical Society

Volume 39, Issue 2, June 2024  pp. 187–192.

On a generalization of vanishing coefficients in two q-series expansions

Authors:  Channabasavayya and Ranganatha Dasappa
Author institution:Department of Mathematics, Central University of Karnataka, Kalaburagi~585~367, Karnataka, India.

Summary:  If the sequences {g(n)} and {h(n)} are defined by ⅀{n={-∞}}{∞}g(n)q{n} = {(q{2t}, q{5-2t};q{5})}{∞}{(± q{5-t},± q{5+t}; q{10})}{∞}{2}, ⅀{n={-∞}}{∞}h(n)q{n}={(± q{2t}, ± q{5-2t};q{5})}{∞}{2}{(q{2t},q{10-2t};q{10})}{∞}, then we prove that g(5n+t)=h(5n+3t{2}-2t)=0, where t≥ 1 and 5 ⫮ t. These vanishing coefficient results generalize the results of Tang, Somashekara and Thulasi, Tang and Xia, and, Dou and Xiao.


Contents   Full-Text PDF