Journal of the Ramanujan Mathematical Society
Volume 34, Issue 2, June 2019 pp. 151–167.
On congruences involving special numbers
∑ {k=0}{(p-1)/2} {C{k}}/{9{k}(k+1)} ≡
{2{p-1}}/{p}({L{2p}}/{3{p-2}}-9) -5 ({5}/{p}) +9 (mod p),
∑ {k=1}{(p-1)/2} ({2k}{k}) {H{k}{2}}/{3{k}} ≡
-{2}/{3} (-{1}/{3}){(p-1)/2} ({p}/{3}) B{p-2} ({1}/{3}) (mod p),
∑ {k=0}{(p-1)/2} ({2k}{k}) {F{k}}/{4{k}(2k+1)} ≡
{1}/{2p}(F{(1-3p)/2} - F{(1+3p)/2}) (mod p2),
where Bn(x) is the Bernoulli polynomial, Cn, Hn,
Fn and Ln are the nth Catalan number, the nth
harmonic number, the nth Fibonacci number and the nth Lucas
number, respectively. (./p) denotes the Legendre
symbol.
Authors:
Sibel Koparal and Nese Ömür
Author institution:Kocaeli University Mathematics Department 41380 Izmit Kocaeli Turkey
Summary:
In this paper, using some special numbers and combinatorial
identities, we show some interesting congruences: for a prime
p > 3,
Contents
Full-Text PDF