Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 92, Issue 1,  Summer 2024  pp. 283-302.

Slow exponential growth representations of Sp(n,1) at the edge of Cowling's strip

Authors:  Pierre Julg (1), Shintaro Nishikawa (2)
Author institution:(1) Institut Denis Poisson, Universite d'Orleans, Collegium Sciences et Techniques, Batiment de mathematiques, Rue de Chartres B.P. 6759, F-45067 Orleans Cedex 2 - France
(2) School of Mathematical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.


Summary:  We obtain a slow exponential growth estimate for the spherical principal series representation ρs of the Lie group Sp(n,1) at the edge (Re(s)=1) of Cowling's strip (|Re(s)|<1) on the Sobolev space Hα(G/P) when α is the critical value Q/2=2n+1. As a corollary, we obtain a slow exponential growth estimate for the homotopy ρs (s[0,1]) of the spherical principal series which is required for the first author's program for proving the Baum--Connes conjecture with coefficients for Sp(n,1).

DOI: http://dx.doi.org/10.7900/jot.2022oct12.2437
Keywords:  Sp(n,1), uniformly bounded representations, slow exponential growth representations

Contents   Full-Text PDF