Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 91, Issue 2, Spring 2024  pp. 335-347.

On the singular abelian rank of ultraproduct II1 factors

Authors:  Patrick Hiatt (1), Sorin Popa (2)
Author institution: (1) Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, U.S.A.
(2) Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, U.S.A.


Summary:  We prove that, under the continuum hypothesis c=1, any ultraproduct II1 factor M=ωMn of separable finite factors Mn contains more than c many mutually disjoint singular MASAs, in other words the singular abelian rank of M, r(M), is larger than c. Moreover, if the strong continuum hypothesis 2c=2 is assumed, then \rm r(M)=2c. More generally, these results hold true for any II1 factor M with unitary group of cardinality c that satisfies the bicommutant condition (A0M)M=M, for all A0M separable abelian.

DOI: http://dx.doi.org/10.7900/jot.2024mar11.2449
Keywords: II1 factor, ultraproduct factors, singular MASA, singular abelian rank

Contents   Full-Text PDF