Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 86, Issue 1, Summer 2021  pp. 203-230.

Maximal Haagerup subalgebras in L(Z2

Authors:  Yongle Jiang
Author institution: School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

Summary: We prove that L(SL_2(\textbf{k})) is a maximal Haagerup--von Neumann subalgebra in L(\textbf{k}^2\rtimes SL_2(\textbf{k})) for \textbf{k}=\mathbb{Q} and \textbf{k}=\mathbb{Z}. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL_2(\textbf{k})) and L^{\infty}(Y)\rtimes SL_2(\textbf{k}), where SL_2(\textbf{k})\curvearrowright Y denotes the quotient of the algebraic action SL_2(\textbf{k})\curvearrowright \widehat{\textbf{k}}^2 by modding out the relation \phi\sim \phi', where \phi, \phi'\in \widehat{\textbf{k}}^2 and \phi'(x, y):=\phi(-x, -y) for all (x, y)\in \textbf{k}^2. As a by-product, we show L(PSL_2(\mathbb{Q})) is a maximal von Neumann subalgebra in L^{\infty}(Y)\rtimes PSL_2(\mathbb{Q}); in particular, PSL_2(\mathbb{Q})\curvearrowright Y is a prime action.

DOI: http://dx.doi.org/10.7900/jot.2020mar09.2282
Keywords: Haagerup property, maximal Haagerup-von Neumann subalgebras, maximal von Neumann subalgebras, prime actions

Contents   Full-Text PDF