Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 86, Issue 1, Summer 2021  pp. 163-188.

Compact perturbations of scalar type spectral operators

Authors:  Ernst Albrecht (1), Bernard Chevreau (2)
Author institution: (1) Fachrichtung 6.1 - Mathematik, Universitaet des Saarlandes, 66041 Saarbruecken, Germany
(2) Institut de Mathematiques de Bordeaux, Universite de Bordeaux, 351, cours de la Liberation, F 33 405 Talence Cedex, France


Summary: We consider compact perturbations S=DΛ+K of normal diagonal operators DΛ by certain compact operators. Sufficient conditions for K to ensure the existence of non-trivial hyperinvariant subspaces for S have recently been obtained by Foia\c{s} et al. in C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C. Pearcy, \textit{J.\ Funct. Anal.} \textbf{253}(2007), 628--646, C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.~Pearcy, \textit{Indiana Univ.\ Math.\ J.} \textbf{57}(2008), 2745--2760, {C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.Pearcy}, \textit{J.\ Math.\ Anal.\ Appl.} \textbf{375}(2011), 602--609 (followed by Fang--Xia \textit{J.\ Funct. Anal} \textbf{263}(2012), 135-1377, and Klaja \textit{J.\ Operator Theory} \textbf{73}(2015), 127--142, by using certain spectral integrals along straight lines through the spectrum of S. In this note, the authors use circular cuts and get positive results under less restrictive local conditions for K.

DOI: http://dx.doi.org/10.7900/jot.2020feb17.2269
Keywords: scalar-type spectral operators, decomposable operators, compact perturbations, hyperinvariant subspaces

Contents   Full-Text PDF