Journal of Operator Theory
Volume 86, Issue 1, Summer 2021 pp. 163-188.
Compact
perturbations of scalar type spectral operators
Authors:
Ernst Albrecht (1), Bernard Chevreau (2)
Author institution: (1) Fachrichtung 6.1 - Mathematik,
Universitaet des Saarlandes,
66041 Saarbruecken, Germany
(2) Institut de Mathematiques de Bordeaux,
Universite de Bordeaux,
351, cours de la Liberation, F 33 405 Talence Cedex, France
Summary: We consider compact perturbations S=DΛ+K of normal diagonal
operators DΛ by certain compact operators.
Sufficient conditions for K to ensure the existence of
non-trivial hyperinvariant subspaces for S have recently been obtained by
Foia\c{s} et al. in C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C. Pearcy,
\textit{J.\ Funct. Anal.} \textbf{253}(2007), 628--646,
C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.~Pearcy,
\textit{Indiana Univ.\ Math.\ J.} \textbf{57}(2008), 2745--2760,
{C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.Pearcy},
\textit{J.\ Math.\ Anal.\ Appl.} \textbf{375}(2011), 602--609
(followed by Fang--Xia
\textit{J.\ Funct. Anal} \textbf{263}(2012), 135-1377,
and Klaja \textit{J.\ Operator Theory} \textbf{73}(2015), 127--142,
by using certain spectral
integrals along straight lines through the spectrum of S. In this note,
the authors use circular cuts and get positive results under
less restrictive local conditions for K.
DOI: http://dx.doi.org/10.7900/jot.2020feb17.2269
Keywords: scalar-type spectral operators, decomposable operators,
compact perturbations, hyperinvariant subspaces
Contents
Full-Text PDF