Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 85, Issue 2, Spring 2021  pp. 417-442.

1-contractive maps on noncommutative Lp-spaces

Authors:  Christian Le Merdy (1), Safoura Zadeh (2)
Author institution: (1) Laboratoire de Mathematiques de Besancon, Universite Bourgogne Franche-Comte, France
(2) Department of Mathematics, Federal University of Paraiba, Brazil


Summary: Let T:Lp(M)Lp(N) be a bounded operator between two noncommutative Lp-spaces, 1. We say that T is \ell^1-bounded (respectively \ell^1-contractive) if T\otimes I_{\ell^1} extends to a bounded (respectively contractive) map from L^p(\mathcal M;\ell^1) into L^p(\mathcal N;\ell^1). We show that Yeadon's factorization theorem for L^p-isometries, 1\leqslant p\not=2 <\infty, applies to an isometry T: L^2(\mathcal M)\to L^2(\mathcal N) if and only if T is \ell^1-contractive. We also show that a contractive operator T: L^p(\mathcal M)\to L^p(\mathcal N) is automatically \ell^1-contractive if it satisfies one of the following two conditions: either T is 2-positive; or T is separating, that is, for any disjoint a,b\in L^p(\mathcal M) (i.e.\ a^*b=ab^*=0), the images T(a),T(b) are disjoint as well.

DOI: http://dx.doi.org/10.7900/jot.2019oct09.2257
Keywords: noncommutative L^p-spaces, regular maps, positive maps, isometries

Contents   Full-Text PDF