Journal of Operator Theory
Volume 85, Issue 1, Winter 2021 pp. 229-256.
Fredholm conditions for invariant
operators: finite abelian groups and boundary value problems
Authors:
Alexandre Baldare (1), Remi Come (2), Matthias Lesch (3), Victor Nistor (4)
Author institution: (1) Universite Lorraine, 57000 Metz,
France
(2) Universite Lorraine, 57000 Metz,
France
(3) Mathematisches
Institut, Univ. Bonn, Endenicher Allee 60, 53115 Bonn,
Germany
(4) Universite Lorraine, 57000 Metz,
France
Summary: Let Γ be a finite abelian group acting on a smooth, compact
manifold M without boundary and let P∈ψm(M;E0,E1) be a
Γ-invariant, classical, pseudodifferential operator acting
between sections of two Γ-equivariant vector bundles. Let
α be an irreducible representation of Γ. We obtain
necessary and sufficient conditions for the restriction πα(P):Hs(M;E0)α→Hs−m(M;E1)α of P between the
α-isotypical components of Sobolev spaces to be Fredholm.
DOI: http://dx.doi.org/10.7900/jot.2019feb26.2270
Keywords: Fredholm operator, pseudodifferential operator, finite abelian group, invariant
operator, isotypical component, elliptic theory
Contents
Full-Text PDF