Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 85, Issue 1, Winter 2021  pp. 229-256.

Fredholm conditions for invariant operators: finite abelian groups and boundary value problems

Authors:  Alexandre Baldare (1), Remi Come (2), Matthias Lesch (3), Victor Nistor (4)
Author institution: (1) Universite Lorraine, 57000 Metz, France
(2) Universite Lorraine, 57000 Metz, France
(3) Mathematisches Institut, Univ. Bonn, Endenicher Allee 60, 53115 Bonn, Germany
(4) Universite Lorraine, 57000 Metz, France


Summary: Let Γ be a finite abelian group acting on a smooth, compact manifold M without boundary and let Pψm(M;E0,E1) be a Γ-invariant, classical, pseudodifferential operator acting between sections of two Γ-equivariant vector bundles. Let α be an irreducible representation of Γ. We obtain necessary and sufficient conditions for the restriction πα(P):Hs(M;E0)αHsm(M;E1)α of P between the α-isotypical components of Sobolev spaces to be Fredholm.

DOI: http://dx.doi.org/10.7900/jot.2019feb26.2270
Keywords: Fredholm operator, pseudodifferential operator, finite abelian group, invariant operator, isotypical component, elliptic theory

Contents   Full-Text PDF