Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 85, Issue 1, Winter 2021  pp. 217-228.

Von Neumann algebras of sofic groups with β(2)1=0 are strongly 1-bounded

Authors:  Dimitri Shlyakhtenko
Author institution: Department of Mathematics, UCLA, Los Angeles, CA 90095, U.S.A.

Summary: We show that if Γ is a finitely generated finitely presented sofic group with zero first L2-Betti number, then the von Neumann algebra L(Γ) is strongly 1-bounded in the sense of Jung. In particular, L(Γ) if \Lambda is any group with free entropy dimension >1, for example a free group. The key technical result is a short proof of an estimate of Jung

DOI: http://dx.doi.org/10.7900/jot.2019oct21.2270
Keywords: free probability, free entropy, L^2-Betti numbers

Contents   Full-Text PDF