Journal of Operator Theory
Volume 83, Issue 2, Spring 2020 pp. 299-319.
Jordan maps and pseudospectrum in $C^*$-algebras
Authors:
A. Bourhim (1), J. Mashreghi (2)
Author institution:(1) Syracuse University, Department of Mathematics,\break 215 Carnegie Building, Syracuse, NY 13244, U.S.A.
(2) D\'epartement de math\'ematiques et de statistique, Universit\'e Laval, Qu\'ebec, QC, Canada, G1K 0A6
Summary: We show that a surjective map $\varphi$ between two unital $C^*$-algebras $\mathcal{A}$ and $\mathcal{B}$, with $\varphi(0)=0$, satisfies
\[
\Lambda_\varepsilon(\varphi(x_1)-\varphi(x_2))=\Lambda_\varepsilon(x_1-x_2),\quad(x_1,~x_2\in\mathcal{A}),
\]
where $\Lambda_\varepsilon$ denotes the $\varepsilon$-pseudospectrum, if and only if $\varphi$ is a Jordan $*$-isomor\-phism. We also characterize maps $\varphi_1$ and $\varphi_2$ from $\mathcal{A}$ onto $\mathcal{B}$ that satisfy
\[
\Lambda_\varepsilon (\varphi_1(x_1)\varphi_2(x_2) )=\Lambda_\varepsilon (x_1x_2 ), \quad(x_1,~x_2\in\mathcal{A}),
\]
or some other binary operations, in terms of Jordan $*$-isomorphisms. The main results imply several other characterizations of Jordan $*$-isomorphisms which are interesting in their own right.
DOI: http://dx.doi.org/10.7900/jot.2018aug09.2252
Keywords: pseudospectrum, spectrum, nonlinear preservers, Jordan homomorphism
Contents
Full-Text PDF