Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 82, Issue 1, Summer 2019  pp. 49-78.

A Beurling theorem for noncommutative Hardy spaces associated with semifinite von Neumann algebras with unitarily invariant norms

Authors:  Wenjing Liu (1), Lauren Sager (2)
Author institution:(1) Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, U.K.
(2) Department of Mathematics, Saint Anselm College, Manchester, NH 03102, U.K.


Summary: We prove a Beurling-type theorem for H-invariant spaces of Lα(M,τ), where α is a unitarily invariant, locally -dominating, mutually continuous norm with respect to \tau, where \mathcal{M} is a von Neumann algebra with a faithful, normal, semifinite tracial weight \tau, and H^\infty is an extension of Arveson's noncommutative Hardy space. We use our main result to characterize the H^\infty-invariant subspaces of a noncommutative Banach function space \mathcal I(\tau) with the norm \|\cdot\|_{E } on \mathcal{M}, the crossed product of a semifinite von Neumann algebra by an action \beta, and B(\mathcal{H}) for a separable Hilbert space \mathcal{H}.

DOI: http://dx.doi.org/10.7900/jot.2018feb19.2228
Keywords: Beurling theorem, semifinite von Neumann algebra, crossed products of von Neumann algebras, invariant subspaces, Banach function spaces

Contents   Full-Text PDF