Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 81, Issue 2, Spring 2019  pp. 481-498.

Functorial properties of Extu(,B) when B is simple with continuous scale

Authors:  P.W. Ng (1), Tracy Robin (2)
Author institution:(1) Department of Mathematics, Univ. of Louisiana at Lafayette, P. O. Box 43568, Lafayette, LA, 70504-3568, U.S.A.
(2) Department of Mathematics, Prairie View A & M University, P. O. Box 519 -- Mailstop 2225, Prairie View, TX, 77446-0519, U.S.A.


Summary: In this note we define two functors Ext and Extu which capture unitary equivalence classes of extensions in a manner which is finer than KK1. We prove that for every separable nuclear C-algebra A, and for every σ-unital nonunital simple continuous scale C-algebra B, Ext(A,B) is an abelian group. We have a similar result for Extu. We study some functorial properties of the covariant functor XExtu(C(X),B), where X ranges over the category of compact metric spaces.

DOI: http://dx.doi.org/10.7900/jot.2018mar18.2223
Keywords: K-theory, extension theory, Brown--Douglas--Fillmore theory, real rank zero

Contents   Full-Text PDF