Journal of Operator Theory
Volume 81, Issue 2, Spring 2019 pp. 371-405.
C∗-Algebras for partial product systems over N
Authors:
Ralf Meyer (1), Devarshi Mukherjee (2)
Author institution:(1) Mathematisches Institut,
Universitaet Goettingen, Bunsenstrasse 3-5, 37073 Goettingen,
Germany
(2) Mathematisches Institut,
Universitaet Goettingen, Bunsenstrasse 3-5, 37073
Goettingen, Germany
Summary: We define partial product systems over N.
They generalise product systems over N
and Fell bundles over Z.
We define Toeplitz C∗-algebras
and relative Cuntz-Pimsner algebras for them and show that the
section C∗-algebra
of a Fell bundle over Z
is a relative Cuntz-Pimsner algebra. We describe the
gauge-invariant ideals in the Toeplitz C∗-algebra.
DOI: http://dx.doi.org/10.7900/jot.2018feb20.2213
Keywords: product system, Fell bundle, C∗-correspondence,
Cuntz-Pimsner algebra, Toeplitz algebra
Contents
Full-Text PDF