Journal of Operator Theory
Volume 81, Issue 2, Spring 2019 pp. 371-405.
$C^*$-Algebras for partial product systems over $\mathbb{N}$
Authors:
Ralf Meyer (1), Devarshi Mukherjee (2)
Author institution:(1) Mathematisches Institut,
Universitaet Goettingen, Bunsenstrasse 3-5, 37073 Goettingen,
Germany
(2) Mathematisches Institut,
Universitaet Goettingen, Bunsenstrasse 3-5, 37073
Goettingen, Germany
Summary: We define partial product systems over $\mathbb N$.
They generalise product systems over $\mathbb N$
and Fell bundles over $\mathbb Z$.
We define Toeplitz $C^*$-algebras
and relative Cuntz-Pimsner algebras for them and show that the
section $C^*$-algebra
of a Fell bundle over $\mathbb Z$
is a relative Cuntz-Pimsner algebra. We describe the
gauge-invariant ideals in the Toeplitz $C^*$-algebra.
DOI: http://dx.doi.org/10.7900/jot.2018feb20.2213
Keywords: product system, Fell bundle, $C^*$-correspondence,
Cuntz-Pimsner algebra, Toeplitz algebra
Contents
Full-Text PDF