Journal of Operator Theory
Volume 81, Issue 1, Winter 2019 pp. 225-254.
Lp-operator algebras associated with oriented graphs
Authors:
Guillermo Cortinas (1), Maria Eugenia Rodriguez
(2)
Author institution: (1) Departamento de Matematica-Instituto Santalo, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria (1428) Buenos Aires, Argentina
(2) Departamento de Ciencias Exactas, Ciclo Basico Comun,
Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Summary: For each 1⩽ and each countable oriented graph Q we introduce an L^p-operator algebra \mathcal{O}^p(Q), which contains the Leavitt path \mathbb{C}-algebra
L_Q as a dense subalgebra, and is universal for those L^p-representations
of L_Q which are spatial in the sense of N.C. Phillips. We prove that
\mathcal{O}^p(Q) is simple as an L^p-operator algebra if and only if
L_Q is simple, in which case it is isometrically isomorphic to
\overline{\rho(L_Q)} for any nonzero spatial L^p-representation \rho:
L_Q\to\mathcal{L}(L^p(X)). If moreover L_Q is purely infinite simple and p\ne
p', then there is no nonzero continuous homomorphism
\mathcal{O}^p(Q)\to\mathcal{O}^{p'}(Q).
DOI: http://dx.doi.org/10.7900/jot.2018jan19.2184
Keywords: oriented graph, Leavitt path algebra, L^p-operator algebra, spatial representation, simple, purely infinite, desingularization
Contents
Full-Text PDF