Journal of Operator Theory
Volume 81, Issue 1, Winter 2019 pp. 225-254.
$L^p$-operator algebras associated with oriented graphs
Authors:
Guillermo Cortinas (1), Maria Eugenia Rodriguez
(2)
Author institution: (1) Departamento de Matematica-Instituto Santalo, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria (1428) Buenos Aires, Argentina
(2) Departamento de Ciencias Exactas, Ciclo Basico Comun,
Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Summary: For each $1\leqslant p<\infty$ and each countable oriented graph $Q$ we introduce an $L^p$-operator algebra $\mathcal{O}^p(Q)$, which contains the Leavitt path $\mathbb{C}$-algebra
$L_Q$ as a dense subalgebra, and is universal for those $L^p$-representations
of $L_Q$ which are spatial in the sense of N.C. Phillips. We prove that
$\mathcal{O}^p(Q)$ is simple as an $L^p$-operator algebra if and only if
$L_Q$ is simple, in which case it is isometrically isomorphic to
$\overline{\rho(L_Q)}$ for any nonzero spatial $L^p$-representation $\rho:
L_Q\to\mathcal{L}(L^p(X))$. If moreover $L_Q$ is purely infinite simple and $p\ne
p'$, then there is no nonzero continuous homomorphism
$\mathcal{O}^p(Q)\to\mathcal{O}^{p'}(Q)$.
DOI: http://dx.doi.org/10.7900/jot.2018jan19.2184
Keywords: oriented graph, Leavitt path algebra, $L^p$-operator algebra, spatial representation, simple, purely infinite, desingularization
Contents
Full-Text PDF