Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 81, Issue 1, Winter 2019  pp. 225-254.

Lp-operator algebras associated with oriented graphs

Authors:  Guillermo Cortinas (1), Maria Eugenia Rodriguez (2)
Author institution: (1) Departamento de Matematica-Instituto Santalo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428) Buenos Aires, Argentina
(2) Departamento de Ciencias Exactas, Ciclo Basico Comun, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina


Summary: For each 1 and each countable oriented graph Q we introduce an L^p-operator algebra \mathcal{O}^p(Q), which contains the Leavitt path \mathbb{C}-algebra L_Q as a dense subalgebra, and is universal for those L^p-representations of L_Q which are spatial in the sense of N.C. Phillips. We prove that \mathcal{O}^p(Q) is simple as an L^p-operator algebra if and only if L_Q is simple, in which case it is isometrically isomorphic to \overline{\rho(L_Q)} for any nonzero spatial L^p-representation \rho: L_Q\to\mathcal{L}(L^p(X)). If moreover L_Q is purely infinite simple and p\ne p', then there is no nonzero continuous homomorphism \mathcal{O}^p(Q)\to\mathcal{O}^{p'}(Q).

DOI: http://dx.doi.org/10.7900/jot.2018jan19.2184
Keywords: oriented graph, Leavitt path algebra, L^p-operator algebra, spatial representation, simple, purely infinite, desingularization

Contents   Full-Text PDF