Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 81, Issue 1, Winter 2019  pp. 157-173.

The case of equality in Young's inequality for the s-numbers in semi-finite von Neumann algebras

Authors:  Gabriel Larotonda
Author institution: Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina, \textit{and} Instituto Argentino de Matem\'atica ``Alberto P. Calder\'on'', CONICET, Buenos Aires, Argentina

Summary:  For a semi-finite von Neumann algebra A, we study the case of equality in Young's inequality of s-numbers for a pair of τ-measurable operators a,b, and we prove that equality is only possible if |a|p=|b|q. We also extend the result to unbounded operators affiliated with A, and relate this problem with other symmetric norm Young inequalities.

DOI: http://dx.doi.org/10.7900/jot.2017dec15.2182
Keywords:  measurable operator, τ-compact operator, semi-finite von Neumann algebra, Young's inequality, s-number

Contents   Full-Text PDF