Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Recently posted articles ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 78, Issue 1,  Summer  2017  pp. 227-243.

Isomorphisms and gap theorems for Figa-Talamanca-Herz algebras

Authors:  Jean Roydor
Author institution: Institut de Mathematiques de Bordeaux, Universite de Bordeaux, 351 Cours de la Liberation, 33405 Talence Cedex, France

Summary:  It is an open question whether the Figa-Talamanca--Herz algebra Ap(G) determines the group G. We consider Figa-Talamanca--Herz algebras equipped with their p-operator space structure and we prove that two locally compact groups G and H are isomorphic if and only if there exists an algebra isomorphism Φ:Ap(G)Ap(H) with p-completely bounded norm if 1< p\leqslant 2 or \| \Phi \|_\mathrm{pcb} \le (2^{1-p}+1)^{1/p} if 2 \leqslant p < \infty. In our second theorem, we prove an `almost norm one'' version of Host's idempotents theorem for uniformly smooth or uniformly convex Banach spaces. As applications, we obtain several gap results: for instance for norms of idempotent p-completely bounded multipliers and amenability constant of Figa-Talamanca--Herz algebras.

DOI: http://dx.doi.org/10.7900/jot.2016jun27.2114
Keywords:  Figa-Talamanca--Herz algebra, p-operator space, p-completely bounded map, uniformly smooth and uniformly convex Banach space

Contents   Full-Text PDF