Journal of Operator Theory
Volume 78, Issue 1, Summer 2017 pp. 227-243.
Isomorphisms and gap theorems for
Figa-Talamanca-Herz algebras
Authors:
Jean Roydor
Author institution: Institut de Mathematiques de Bordeaux,
Universite de Bordeaux, 351 Cours de la Liberation, 33405 Talence Cedex, France
Summary: It is an open question whether the
Figa-Talamanca--Herz algebra Ap(G) determines the group G. We
consider Figa-Talamanca--Herz algebras equipped with their p-operator
space structure and we prove that two locally compact groups G and H are
isomorphic if and only if there exists an algebra isomorphism Φ:Ap(G)→Ap(H) with p-completely bounded norm ‖ if 1< p\leqslant 2 or
\| \Phi \|_\mathrm{pcb} \le (2^{1-p}+1)^{1/p} if 2 \leqslant p < \infty.
In our second theorem, we prove an `almost norm one'' version of Host's
idempotents theorem for uniformly smooth or uniformly convex Banach spaces.
As applications, we obtain several gap results: for instance for norms of
idempotent p-completely bounded multipliers and amenability constant of
Figa-Talamanca--Herz algebras.
DOI: http://dx.doi.org/10.7900/jot.2016jun27.2114
Keywords: Figa-Talamanca--Herz algebra, p-operator space,
p-completely bounded map, uniformly smooth and uniformly convex Banach
space
Contents
Full-Text PDF