Journal of Operator Theory
Volume 77, Issue 1, Winter 2017 pp. 39-59.
Hypercyclic behavior of some non-convolution operators on $H(\mathbf{C}^N)$
Authors:
Santiago Muro (1), Damian Pinasco (2), and Martin
Savransky (3)
Author institution:(1) Departamento de Matematica - Pab I,
Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires,
(1428), Ciudad Autonoma de Buenos Aires, Argentina and CONICET
(2) Departamento de Matematicas y Estadistica,
Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350, (1428), Ciudad
Autonoma de Buenos Aires, Argentina and CONICET
(3) Departamento de Matematica - Pab I,
Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires,
(1428), Ciudad Autonoma de Buenos Aires, Argentina and CONICET
Summary: We study hypercyclicity properties of a family of non-convolution operators
defined on the spaces of entire functions on $\mathbb{C}^N$.
These operators are a composition of a differentiation operator and an affine composition operator, and
are analogues of operators studied by Aron and Markose on $H(\mathbb{C})$.
The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.
DOI: http://dx.doi.org/10.7900/jot.2015oct08.2127
Keywords: non-convolution operators, differentiation operators, composition operators, frequently hypercyclic
operators, strongly mixing operators
Contents
Full-Text PDF