Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 76, Issue 1, Summer 2016  pp. 93-106.

Completions of upper-triangular matrices to left-Fredholm operators with non-positive index

Authors:  Dragana S. Cvetkovic-Ilic
Author institution: Department of Mathematics, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia

Summary:  In this paper, for given operators AB(H) and BB(K), where H, K are infinite-dimensional complex separable Hilbert spaces, we describe the set of all CB(K,H) such that, the operator matrix MC=[AC0B] %\endbmatrixbelongsto\Phi_+^-(\mathcal{H}\oplus\mathcal{K}),whichmeansthatitisaleftFredholmoperatorwithnonpositiveindex.Asanapplicationofourresults,inthecasewhenatleastoneoftheoperatorsA\in\mathcal{B}(\mathcal{H}),B\in\mathcal{B}(\mathcal{K})iscompactweobtainsomeinterestingcorollariespertainingtointersectionsofthespectra\sigma_{\Phi_+^-}(M_C)whereC$ runs through certain classes of operators.

DOI: http://dx.doi.org/10.7900/jot.2015sep07.2078
Keywords:  Fredholm operator, left-Fredholm operator with non-positive index, index of operator, upper-triangular operator matrix

Contents   Full-Text PDF