Journal of Operator Theory
Volume 76, Issue 1, Summer 2016 pp. 93-106.
Completions of upper-triangular matrices to left-Fredholm operators with non-positive index
Authors:
Dragana S. Cvetkovic-Ilic
Author institution: Department of Mathematics, Faculty of Science and
Mathematics, University of Nis, 18000 Nis, Serbia
Summary: In this paper, for given operators A∈B(H) and B∈B(K), where H,
K are infinite-dimensional complex separable Hilbert spaces, we describe
the set of all C∈B(K,H) such that, the operator matrix
MC=[AC0B] %\endbmatrixbelongsto\Phi_+^-(\mathcal{H}\oplus\mathcal{K}),whichmeansthatitisaleft−Fredholmoperatorwithnon−positiveindex.Asanapplicationofourresults,inthecasewhenatleastoneoftheoperatorsA\in\mathcal{B}(\mathcal{H}),B\in\mathcal{B}(\mathcal{K})iscompactweobtainsomeinterestingcorollariespertainingtointersectionsofthespectra\sigma_{\Phi_+^-}(M_C)whereC$ runs through certain classes of operators.
DOI: http://dx.doi.org/10.7900/jot.2015sep07.2078
Keywords: Fredholm operator, left-Fredholm operator with non-positive index, index of operator, upper-triangular operator matrix
Contents
Full-Text PDF