Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 75, Issue 1, Winter 2016  pp. 195-208.

A Wold-type decomposition for a class of row ν-hypercontractions

Authors:  Sameer Chavan (1) and Rani Kumari (2)
Author institution: (1) Indian Institute of Technology Kanpur, Kanpur- 208016, India
(2) Indian Institute of Technology Kanpur, Kanpur- 208016, India


Summary: For a positive integer k and d-tuple T=(T1,,Td), consider D_{T, k}:= \sum\limits_{l=0}^{k} (-1)^l {k \choose l} {\sum\limits_{|p|=l}\frac{l!}{p!}{T^*}^p}{T^p}. A commuting d-tuple T is said to be a row \nu-hyper\-contraction if D_{T^*, k} \geqslant 0 for k = 1, \ldots, \nu. Under some assumption, we prove that any row \nu-hypercontraction d-tuple T, for which D_{T^*, \nu} is a projection, decomposes into S_{\nu} \oplus V^* for a direct sum S_{\nu} of M_{z,\nu} and a spherical isometry V. In addition, if T is a spherical expansion and d \geqslant \nu, then T= S_{\nu} \oplus U for a spherical unitary U. This generalizes a theorem of Richter-Sundberg. Further, we identify extremals of joint \nu-hypercontractive d-tuples.

DOI: http://dx.doi.org/10.7900/jot.2015jan17.2066
Keywords: Wold-type decomposition, hypercontraction, row \nu-hypercontraction, extremal family

Contents   Full-Text PDF