Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 74, Issue 1, Summer 2015  pp. 75-99.

On the geometry of normal projections in Krein spaces

Authors:  Eduardo Chiumiento (1), Alejandra Maestripieri (2), and Francisco Martinez Peria (2)
Author institution:(1) Departamento de Matem\'atica--FCE, Universidad Nacional de La Plata, La Plata, 1900, Argentina and Instituto Argentino de Matem\'atica Alberto P. Calder\'on, CONICET, Buenos Aires, 1083, Argentina
(2) Departamento de Matem\'atica--FI, Universidad de Buenos Aires, Buenos Aires, 1063, Argentina and Instituto Argen\-tino de Matem\'atica Alberto P. Calder\'on, CONICET, Buenos Aires, 1083, Argentina
(3) Departamento de Matem\'atica--FCE, Universidad Nacional de La Plata, La Plata, 1900, Argentina and Instituto Argentino de Matem\'atica Alberto P. Calder\'on, CONICET, Buenos Aires, 1083, Argentina


Summary: Let H be a Krein space with fundamental symmetry J. Along this paper, the geometric structure of the set of J-normal projections Q is studied. The group of J-unitary operators UJ naturally acts on Q. Each orbit of this action turns out to be an analytic homogeneous space of UJ, and a connected component of \q. The relationship between Q and the set E of J-selfadjoint projections is analized: both sets are analytic submanifolds of L(H) and there is a natural real analytic submersion from Q onto E, namely QQQ. The range of a J-normal projection is always a pseudo-regular subspace. Then, for a fixed pseudo-regular subspace S, it is proved that the set of J-normal projections onto S is a covering space of the subset of J-normal projections onto S with fixed regular part.

DOI: http://dx.doi.org/10.7900/jot.2014may06.2035
Keywords: Krein space, normal operator, projection, submanifold

Contents   Full-Text PDF