Journal of Operator Theory
Volume 74, Issue 1, Summer 2015 pp. 75-99.
On the geometry of normal projections in Krein
spaces
Authors:
Eduardo Chiumiento (1), Alejandra Maestripieri (2),
and Francisco Martinez Peria (2)
Author institution:(1) Departamento de Matem\'atica--FCE, Universidad
Nacional de La Plata, La Plata, 1900, Argentina and Instituto
Argentino de Matem\'atica Alberto P. Calder\'on, CONICET, Buenos
Aires,
1083, Argentina
(2) Departamento de Matem\'atica--FI, Universidad
de Buenos Aires, Buenos Aires, 1063, Argentina and Instituto
Argen\-tino de Matem\'atica Alberto P. Calder\'on, CONICET,
Buenos
Aires, 1083, Argentina
(3) Departamento de Matem\'atica--FCE,
Universidad Nacional de La Plata, La Plata, 1900, Argentina
and
Instituto Argentino de Matem\'atica Alberto P. Calder\'on,
CONICET,
Buenos Aires, 1083, Argentina
Summary: Let H be a Krein space with fundamental symmetry
J.
Along this paper, the geometric structure of the set of J-normal
projections Q is studied. The group of J-unitary operators
UJ
naturally acts on Q. Each orbit of this action turns out to be an
analytic homogeneous space of UJ, and a connected component of \q.
The relationship between Q and the set E of J-selfadjoint
projections is analized: both sets are analytic submanifolds of
L(H) and
there is a natural real analytic submersion from Q onto
E, namely
Q↦QQ♯.
The range of a J-normal projection is always a pseudo-regular subspace.
Then, for a fixed pseudo-regular subspace S, it is proved that the set of
J-normal projections onto S is a covering space of the subset of
J-normal projections onto S with fixed regular part.
DOI: http://dx.doi.org/10.7900/jot.2014may06.2035
Keywords: Krein space, normal operator, projection, submanifold
Contents
Full-Text PDF