Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 73, Issue 2, Spring 2015  pp. 465-490.

K-theory and homotopies of 2-cocycles on transformation groups

Authors:  Elizabeth Gillaspy
Author institution:Department of Mathematics, University of Colorado - Boulder, Boulder, CO 80309-0395, U.S.A.

Summary: This paper constitutes a first step in the author's program to investigate the question of when a homotopy of 2-cocycles ω={ωt}t[0,1] on a locally compact Hausdorff groupoid G induces an isomorphism of the K-theory groups of the reduced twisted groupoid C-algebras: K(Cr(G,ω0))K(Cr(G,ω1)). Generalizing work of S. Echterhoff, W. L\"uck, N.C. Phillips, S. Walters, \textit{J. Reine Angew. Math.} \textbf{639}(2010), 173--221, we show that if \G=G is a transformation group such that G satisfies the Baum--Connes conjecture with coefficients, a homotopy \omega = \{\omega_t\}_{t \in [0,1]} of 2-cocycles on G \ltimes X gives rise to an isomorphism K_*(C^*_\mathrm r(G \ltimes X, \omega_0)) \cong K_*(C^*_\mathrm r(G \ltimes X, \omega_1)).

DOI: http://dx.doi.org/10.7900/jot.2014feb14.2033
Keywords: transformation group, twisted groupoid C^*-algebra, K-theory, groupoid, 2-cocycle

Contents   Full-Text PDF