Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 73, Issue 2, Spring 2015  pp. 433-441.

An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces. I

Authors:  Jaydeb Sarkar
Author institution:Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India

Summary: Let T be a C0-contraction on a Hilbert space \clh and \cls be a non-trivial closed subspace of \clh. We prove that \cls is a T-invariant subspace of \clh if and only if there exists a Hilbert space \cld and a partially isometric operator Π:H2\cld(D)\raro\clh such that ΠMz=TΠ and that \cls=ran~Π, or equivalently, P\cls=ΠΠ.As an application we completely classify the shift-invariant subspaces of analytic reproducing kernel Hilbert spaces over the unit disc. Our results also include the case of weighted Bergman spaces over the unit disk.

DOI: http://dx.doi.org/10.7900/jot.2014jan29.2042
Keywords: reproducing kernels, Hilbert modules, invariant subspaces, weighted Bergman spaces, Hardy space

Contents   Full-Text PDF