Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 72, Issue 2, Fall 2014  pp. 475-485.

On the characterization of Gelfand-Shilov-Roumieu spaces

Authors:  Mihai Pascu
Author institution: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, RO-014700 Bucharest, Romania, and "Petroleum-Gas" University of Ploiesti, Bd. Bucuresti, 39, Ploiesti, Romania

Summary:  Generalized m-Gelfand--Shilov--Roumieu vector spaces Sm(X)\break are introduced. Here m=(m(1),,m(n)), X=(X1,,Xn) and m(1),,m(n) are sequences of positive real numbers, while X1,,Xn are operators in a Hilbert space. Our definition extends ter Elst's definition of Gevrey vector spaces \cite{TE2}. Conditions are given on the sequences m(1),,m(n) and on the operators X1,,Xn so that the equality Sm(X)=Sm(1)(X1)Sm(n)(Xn) is valid. As a corollary we obtain a proof of a characterization theorem for Gelfand-Shilov-Roumieu spaces.

DOI: http://dx.doi.org/10.7900/jot.2013jun04.2009
Keywords:  Gelfand-Shilov-Roumieu vectors, Heisenberg group

Contents   Full-Text PDF