Journal of Operator Theory
Volume 72, Issue 2, Fall 2014 pp. 475-485.
On the characterization of Gelfand-Shilov-Roumieu
spaces
Authors:
Mihai Pascu
Author institution: Institute of Mathematics "Simion Stoilow"
of the Romanian Academy,
RO-014700 Bucharest, Romania, and "Petroleum-Gas" University of
Ploiesti, Bd. Bucuresti, 39, Ploiesti, Romania
Summary: Generalized m-Gelfand--Shilov--Roumieu
vector spaces
Sm(X)\break are introduced.
Here m=(m(1),…,m(n)), X=(X1,…,Xn) and m(1),…,m(n)
are sequences of positive real numbers, while X1,…,Xn are
operators in a Hilbert space.
Our definition extends ter Elst's definition of Gevrey vector spaces
\cite{TE2}.
Conditions are given on the sequences m(1),…,m(n) and on the
operators
X1,…,Xn so that the equality
Sm(X)=Sm(1)(X1)∩⋯∩Sm(n)(Xn) is valid. As a corollary we obtain a proof of a
characterization theorem for Gelfand-Shilov-Roumieu spaces.
DOI: http://dx.doi.org/10.7900/jot.2013jun04.2009
Keywords: Gelfand-Shilov-Roumieu vectors, Heisenberg group
Contents
Full-Text PDF