Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 72, Issue 2, Fall 2014  pp. 405-428.

Spherically balanced Hilbert spaces of formal power series in several variables. I

Authors:  Sameer Chavan (1) and Surjit Kumar (2)
Author institution: (1) Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India
(2) Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India


Summary:  Motivated by theory of spherical Cauchy dual tuples, we study the spherically balanced spaces, that is, Hilbert spaces H2(β) of formal power series in the variables z1,,zm for which {βn}nZm+ satisfies \beqn \sum_{k=1}^m \frac{\beta^2_{n+ \varepsilon_i + \varepsilon_k}}{\beta^2_{n+\varepsilon_i}} = \sum_{k=1}^m \frac{\beta^2_{n+ \varepsilon_j + \varepsilon_k}}{\beta^2_{n+ \varepsilon_j}}\quad\mbox{for~all~}n \in \mathbb Z^m_+~\mbox{and~}i, j = 1, \ldots, m. \eeqn The main result in this paper states that H2(β) is spherically balanced if and only if there exist a Reinhardt measure μ supported on the unit sphere B and a Hilbert space H2(γ) of formal power series in one variable such that

DOI: http://dx.doi.org/10.7900/jot.2013apr22.2000
Keywords:  multi-shifts, slice representation, spherical isometry, cyclic vectors

Contents   Full-Text PDF