Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 72, Issue 2, Fall 2014  pp. 387-404.

Pure inductive limit state and Kolmogorov's property. II

Authors:  Anilesh Mohari
Author institution: The Institute of Mathematical Sciences, Tharamani, Chennai-600113, India

Summary:  A translation invariant state ω on C-algebra \clb=k\IZM(k)d, where M(k)d=Md(\IC) is the d-dimensional matrices over field of complex numbers, give rises to a stationary quantum Markov chain and associates canonically a unital completely positive normal map τ on a von Neumann algebra \clm0 with a faithful normal invariant state ϕ0. We give an asymptotic criteria on the Markov map (\clm0,τ,ϕ0) for purity of ω. Such a pure ω gives only a type I or type III factor ωR once restricted to one side of the chain \clbR=k\IZ+M(k). In case ωR is type I, ω admits Kolmogorov's property.

DOI: http://dx.doi.org/10.7900/jot.2013apr11.1985
Keywords:  uniformly hyperfinite factors, Kolmogorov's property, pure states

Contents   Full-Text PDF