Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 72, Issue 2, Fall 2014  pp. 371-385.

Jordan blocks of H2(Dn)

Authors:  Jaydeb Sarkar
Author institution: Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India

Summary:  We develop a several variables analog of the Jordan blocks of the Hardy space H2(D). In this consideration, we obtain a complete characterization of the doubly commuting quotient modules of the Hardy module H2(Dn). We prove that a quotient module \clq of H2(Dn) (n) is doubly commuting if and only if \clq = \clq_{\Theta_1} \otimes \cdots \otimes \clq_{\Theta_n},where each \clq_{\Theta_i} is either a one variable Jordan block H^2(\mathbb{D})/\Theta_i H^2(\mathbb{D}) for some inner function \Theta_i or the Hardy module H^2(\mathbb{D}) on the unit disk for all i = 1, \ldots, n. We say that a submodule \cls of H^2(\mathbb{D}^n) is co-doubly commuting if the quotient module H^2(\mathbb{D}^n)/\cls is doubly commuting. We obtain a Beurling like theorem for the class of co-doubly commuting submodules of H^2(\mathbb{D}^n). We prove that a submodule \cls of H^2(\mathbb{D}^n) is co-doubly commuting if and only if \cls = \mathop{\sum}_{i=1}^m \Theta_i H^2(\mathbb{D}^n),for some integer m \leqslant n and one variable inner functions \{\Theta_i\}_{i=1}^m.

DOI: http://dx.doi.org/10.7900/jot.2013mar16.1980
Keywords:  Hilbert modules, Jordan blocks, doubly commuting quotient modules, Beurling's theorem, invariant subspaces

Contents   Full-Text PDF