Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 72, Issue 1, Summer 2014  pp. 87-114.

Non-selfadjoint double commutant theorems

Authors:  L.W. Marcoux (1) and M. Mastnak (2)
Author institution: (1) Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
(2) Department of Mathematics and Computing Science, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3


Summary: The von Neumann double commutant theorem states that if N is a weak-operator topology closed unital, selfadjoint subalgebra of the set B(H) of all bounded linear operators acting on a Hilbert space H, and if N:={T\bofh:TN=NT for all NN} denotes the commutant of N, then N=N. In this paper, we continue the analysis of not necessarily selfadjoint subalgebras S of B(H) whose second commutant S agrees with S. More specifically, we examine the case where S=D+R, where R is a bimodule over a masa M in B(H) and D is a unital subalgebra of M.

DOI: http://dx.doi.org/10.7900/jot.2012nov02.1968
Keywords: relative double commutant, double commutant property, masa, skeleton, non-selfadjoint bimodule, relative annihilator

Contents   Full-Text PDF