Journal of Operator Theory
Volume 70, Issue 1, Summer 2013 pp. 53-73.
Module weak Banach--Saks and module Schur properties of Hilbert C∗-modulesAuthors: Michael Frank (1) and Alexander A. Pavlov (2)
Author institution: (1) Fakultat Informatik, Mathematik und Naturwissenschaften, Hochschule fur Technik, Wirtschaft und Kultur (HTWK) Leipzig, PF 301166, 04251 Leipzig, Germany
(2) Mathematical department, All-Russian Institute of Scientific and Technical Information, Russian Academy of Sciences (VINITI RAS), 125190 Moscow, Russia
Summary: Continuing research on Banach--Saks and Schur properties started by C.-H.~Chu, M.~Kusuda, and the authors, we investigate analogous properties in the Banach C∗-module context. As an environment serves the class of Hilbert C∗-modules. Some properties of weak module topologies on Hilbert C∗-modules are described. Natural module analogues of the classical weak Banach--Saks and Schur properties are defined and studied. A number of useful characterizations of properties of Hilbert C∗-modules is obtained. In particular, some interrelations of these properties with the self-duality property of countably generated Hilbert C∗-modules are established.
DOI: http://dx.doi.org/10.7900/jot.2011apr21.1933
Keywords: C∗-algebras, Hilbert C∗-modules, module Banach-Saks properties, module Schur property, self-duality
Contents Full-Text PDF