Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 69, Issue 2, Spring 2013  pp. 387-421.

On Matsaev's conjecture for contractions on noncommutative Lp-spaces

Authors Cedric Arhancet
Author institution: Laboratoire de Mathematiques, Universite de Franche-Comte, 25030 Besancon Cedex, France

Summary:  We exhibit large classes of contractions on noncommutative Lp-spaces which satisfy the noncommutative analogue of Matsaev's conjecture, introduced by Peller. In particular, we prove that every Schur multiplier on a Schatten space Sp induced by a contractive Schur multiplier on B(2) associated with a real matrix satisfy this conjecture. Moreover, we deal with analogue questions for C0-semigroups. Finally, we disprove a conjecture of Peller concerning norms on the space of complex polynomials arising from Matsaev's conjecture and Peller's problem. Indeed, if S denotes the shift on p and σ the shift on the Schatten space Sp, the norms and \|P(\sigma)\ot \Id_{S^p}\|_{S^p(S^p) \xrightarrow S^p(S^p)} can be different for a complex polynomial P.

DOI:  http://dx.doi.org/10.7900/jot.2010dec29.1905
Keywords:  Matsaev's conjecture, noncommutative L^p-spaces, shift operator, dilations, Schur multipliers, Fourier multipliers, semigroups

Contents    Full-Text PDF