Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 67, Issue 1, Winter 2012  pp. 257-277.

Hypercyclicity of shifts as a zero-one law of orbital limit points

Authors Kit Chan (1) and Irina Seceleanu (2)
Author institution: (1) Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, 43403, U.S.A.
(2) Department of Mathematics and Computer Science, Bridgewater State University, Bridgewater, 02325, U.S.A.


Summary:  On a separable, infinite dimensional Banach space X, a bounded linear operator T:XX is said to be \textit{hypercyclic} if there exists a vector x in X such that its orbit Orb(T,x)={x,Tx,T2x,} is dense in X. However, for a unilateral weighted backward shift or a bilateral weighted shift T to be hypercyclic, we show that it suffices to merely require the operator to have an orbit Orb(T,x) with a non-zero limit point.


Contents    Full-Text PDF