Journal of Operator Theory
Volume 65, Issue 2, Spring 2011 pp. 451-470.
Lattice isomorphisms between spaces of integrable functions with respect to vector measuresAuthors: A. Fernandez (1), F. Mayoral (2), F. Naranjo (3), and E.A. Sanchez-Perez (4)
Author institution: (1) Dpto. Matematica Aplicada II, Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n, 41092-Sevilla, Spain
(2) Dpto. Matematica Aplicada II, Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n, 41092-Sevilla, Spain
(3) Dpto. Matematica Aplicada II, Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n, 41092-Sevilla, Spain
(4) Instituto Universitario de Matematica Pura y Aplicada (I.U.M.P.A.), Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022-Valencia, Spain
Summary: In this paper we study the relation between different spaces of vector measures (Ω1,Σ1,m1) and (Ω2,Σ2,m2); where (Ω1,Σ1) and (Ω2,Σ2) are measurable spaces and m1 and m2 are countably additive vector measures taking values in real Banach spaces X and Y, respectively, when the corresponding spaces of integrable functions L1(m1) and L1(m2) are lattice isomorphic. As a consequence, we give a description of the lattice isomorphisms between spaces of integrable functions with respect to a vector measure.
Contents Full-Text PDF