Journal of Operator Theory
Volume 59, Issue 2, Spring 2008 pp. 309-332.
Weighted inequalities involving two Hardy operators with applications to embeddings of function spacesAuthors: Maria Carro (1), Amiran Gogatishvili (2), Joaquim Martin (3), and Lubos Pick (4)
Author institution: (1) Departament de Matematica Aplicada i Analisi, Universitat de Barcelona, 08071 Barcelona, Spain
(2) Mathematical Institute, Academy of Sciences of the Czech Republic, Zitna 25, 115 67 Praha 1, Czech Republic
Summary: We find necessary and sufficient conditions for the two-operator weighted inequality (∫0\sp∞(1t∫0\sptf(s)ds)\spqw(t)\ddt)\sp1/q⩽ We use this inequality to study embedding properties between the function spaces S\sp p(u) equipped with the norm \|f\|_{S\sp p(u)}\!=\! \!\Big(\!\int\limits_{0}^{\infty}[f\sp{**}\!(t)\!-\!f\sp*\!(t)]\sp pu(t)\dd t\Big)\sp{1/p} and the classical Lorentz spaces \Lambda\sp p(v) and \Gamma\sp q(w). Moreover, we solve the only missing open case of the embedding \Lambda\sp p(v)\hra\Gamma\sp q(w), where 0<q<p\leqslant 1.
Contents Full-Text PDF