Journal of Operator Theory
Volume 56, Issue 1, Summer 2006 pp. 17-46.
Spectral triples for AF C∗-algebras and metrics on the Cantor setAuthors: Erik Christensen (1) and Cristina Ivan
Author institution: (1) Department of Mathematics, University of Copenhagen, Copenhagen , 2100, Denmark
(2) Department of Mathematics, University of Hannover, Hannover, 30167, Germany
Summary: An AF C∗-algebra has a natural filtration as an increasing sequence of finite dimensional C∗-algebras. We show that it is possible to construct a Dirac operator which relates to this filtration in a natural way and which will induce a metric for the weak*-topology on the state space of the algebra. It turns out that for AF C∗-algebras, there is no limit to the growth of the eigenvalues of such a Dirac operator. We have obtained a kind of an inverse to this result, by showing that a phenomenon like this can only occur for AF C∗-algebras. The results are then applied to a study of the classical Cantor set.
Contents Full-Text PDF