Journal of Operator Theory
Volume 55, Issue 1, Winter 2006 pp. 185-211.
Schroedinger operators with unbounded driftAuthors: Wolfgang Arendt (1), Giorgio Metafune (2), and Diego Pallara (3)
Author institution: (1) Abteilung Angewandte Analysis, Universitaet Ulm, D-89069 Ulm, Germany
(2) Dipartimento di Matematica ``Ennio de Giorgi'', Universit\`a di Lecce, C.P. 193, 73100, Lecce, Italia
Dipartimento di Matematica
(3) ``Ennio de Giorgi'', Universit\`a di Lecce, C.P. 193, 73100, Lecce, Italia
Summary: Let aij∈C1b(\reN), i,j=1,…,N be uniformly elliptic, and let b∈C1(\reN), V∈C(\reN). If \diverbp⩽, then we construct a unique minimal positive semigroup generated by a restriction of the operator A defined by the expression Au=\sum_{i,j=1}^N D_i(a_{ij}D_ju) - \sum_{i=1}^N b_iD_iu - Vu on L^p(\re^N) with maximal domain. We give a criterion for C_\mathrm c^\infty(\re^N) to be a core and we give conditions on V and b which imply that the semigroup is given by kernels allowing an upper Gaussian bound. By a specific example we show that our criteria are close to optimal.
Contents Full-Text PDF