Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 54, Issue 1, Summer 2005  pp. 27-68.

C*-groupo\''ides quantiques et inclusions de facteurs Structure sym\'etrique et autodualit\'e, action sur le facteur hyperfini de type II1

Authors Marie-Claude David


Summary:  Let N0N1 a depth 2, finite index inclusion of type II1 factors and N0N1N2N3 the corresponding Jones tower. D. Nikshych and L. Vainerman built dual structures of quantum C-groupoid on the relative commutants N0N2 et N1N3. Here I define a new duality which allows a symmetric construction without changing the involution. So the Temperley-Lieb algebras are selfdual quantum C-groupoids and the quantum C-groupoids associated to a finite depth finite index inclusion can be chosen selfdual. I show that every finite-dimensional connected quantum C-groupoid acts outerly on the type II1 hyperfinite factor. In light of this particular case, I propose a deformation of any finite quantum C-groupoid to a regular finite quantum C-groupoid.


Contents    Full-Text PDF