Journal of Operator Theory
Volume 54, Issue 1, Summer 2005 pp. 27-68.
C*-groupo\''ides quantiques et inclusions de facteurs Structure sym\'etrique et autodualit\'e, action sur le facteur hyperfini de type II1Authors: Marie-Claude David
Summary: Let N0⊂N1 a depth 2, finite index inclusion of type II1 factors and N0⊂N1⊂N2⊂N3⊂⋯ the corresponding Jones tower. D. Nikshych and L. Vainerman built dual structures of quantum C∗-groupoid on the relative commutants N′0∩N2 et N′1∩N3. Here I define a new duality which allows a symmetric construction without changing the involution. So the Temperley-Lieb algebras are selfdual quantum C∗-groupoids and the quantum C∗-groupoids associated to a finite depth finite index inclusion can be chosen selfdual. I show that every finite-dimensional connected quantum C∗-groupoid acts outerly on the type II1 hyperfinite factor. In light of this particular case, I propose a deformation of any finite quantum C∗-groupoid to a regular finite quantum C∗-groupoid.
Contents Full-Text PDF