Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 53, Issue 1, Winter 2005  pp. 35-48.

States with equivalent supports

Authors Esteban Andruchow (1) and Alejandro Varela (2)
Author institution: (1) Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez entre J.L. Suarez y Verdi, (1613) Los Polvorines, Argentina
(2) Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez entre J.L. Suarez y Verdi, (1613) Los Polvorines, Argentina


Summary:  Let \b be a von Neumann algebra and X a C Hilbert \b-module. If p\b is a projection, denote by \sp={xX:x,x=p}, the p-sphere of X. For \f a state of \b with support p in \b and x\sp, consider the state \fx of \l given by \fx(t)=\f(x,t(x)). In this paper we study certain sets associated to these states, and examine their topologic properties. As an application of these techniques, we prove that the space of states of the hyperfinite II1 factor R0, with support equivalent to a given projection pR0, regarded with the norm topology (of the conjugate space of R0), has trivial homotopy groups of all orders.


Contents    Full-Text PDF