Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue · All issues   
Home Overview Authors Editorial Contact Subscribe

Journal of Operator Theory

Volume 51, Issue 2, Spring 2004  pp. 245-253.

A comparison between the max and min norms on C(Fn)C(Fn)

Authors Florin Radulescu
Author institution: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, USA

Summary:  Let Fn, n2, be the free group on n generators, denoted by U1,U2,,Un. Let C(Fn) be the full C-algebra of Fn. Let X be the vector subspace of the algebraic tensor product C(Fn)C(Fn), spanned by 11,U11,,Un1,1U1,,1Un. Let and \Vert \,\cdot\,\Vert_{\max} be the minimal and maximal C^{\ast} tensor norms on C^{\ast}(F_{n})\otimes C^{\ast}(F_{n}), and use the same notation for the corresponding (matrix) norms induced on M_{k}(\mathbb{C})\otimes\mathcal{X}, k\in\mathbb{N}. Identifying \mathcal{X} with the subspace of C^{\ast}(F_{2n}) obtained by mapping U_{1}\otimes1,\ldots,1\otimes U_{n} into the 2n generators and the identity into the identity, we get a matrix norm \Vert \,\cdot\,\Vert _{C^{\ast}(F_{2n}) } which dominates the \Vert \,\cdot\,\Vert_{\max} norm on M_{k}(\mathbb{C})\otimes\mathcal{X}. In this paper we prove that, with N=2n+1=\dim\mathcal{X}, we have \Vert X\Vert _{\max}\leq\Vert X\Vert _{C^{\ast}(F_{2n}) }\leq( N^{2}-N) ^{1/2}\Vert X\Vert _{\min},\quad X\in M_{k}( \mathbb{C}) \otimes\mathcal{X}.


Contents    Full-Text PDF