Journal of Operator Theory
Volume 51, Issue 2, Spring 2004 pp. 245-253.
A comparison between the max and min norms on C∗(Fn)⊗C∗(Fn)Authors: Florin Radulescu
Author institution: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, USA
Summary: Let Fn, n≥2, be the free group on n generators, denoted by U1,U2,…,Un. Let C∗(Fn) be the full C∗-algebra of Fn. Let X be the vector subspace of the algebraic tensor product C∗(Fn)⊗C∗(Fn), spanned by 1⊗1,U1⊗1,…,Un⊗1,1⊗U1,…,1⊗Un. Let ‖ and \Vert \,\cdot\,\Vert_{\max} be the minimal and maximal C^{\ast} tensor norms on C^{\ast}(F_{n})\otimes C^{\ast}(F_{n}), and use the same notation for the corresponding (matrix) norms induced on M_{k}(\mathbb{C})\otimes\mathcal{X}, k\in\mathbb{N}. Identifying \mathcal{X} with the subspace of C^{\ast}(F_{2n}) obtained by mapping U_{1}\otimes1,\ldots,1\otimes U_{n} into the 2n generators and the identity into the identity, we get a matrix norm \Vert \,\cdot\,\Vert _{C^{\ast}(F_{2n}) } which dominates the \Vert \,\cdot\,\Vert_{\max} norm on M_{k}(\mathbb{C})\otimes\mathcal{X}. In this paper we prove that, with N=2n+1=\dim\mathcal{X}, we have \Vert X\Vert _{\max}\leq\Vert X\Vert _{C^{\ast}(F_{2n}) }\leq( N^{2}-N) ^{1/2}\Vert X\Vert _{\min},\quad X\in M_{k}( \mathbb{C}) \otimes\mathcal{X}.
Contents Full-Text PDF