Journal of Operator Theory
Volume 35, Issue 2, Spring 1996 pp. 317-335.
A simple proof of a theorem of Kirchberg and related results on C*-normsAuthors: Gilles Pisier
Author institution: Texas A \& M University, College Station, TX 77843, U.S.A. and Universite Paris VI, Equipe d'Analyse, Case 186, 75252 Paris Cedex 05, FRANCE
Summary: Let F be a free group and let C*(F) be the (full) C*-algebra of F. We give a simple proof of Kirchberg’s theorem that there is only one C*-norm on the algebraic tensor product C*(F) \otimes B(H), or equivalently that C*(F) \otimes_min B(H) = C*(F) \otimes_max B(H). More generally, let A be the (unital) free product of a family (Ai)i∈I of (unital) C*-algebras. We show that if Ai⊗minB(H)=Ai⊗maxB(H) holds for all i in I, then A⊗minB(H)=A⊗maxB(H).
Contents Full-Text PDF