Journal of Operator Theory
Volume 33, Issue 1, Winter 1995 pp. 117-158.
Characterization of Jordan elements in Ψ∗-algebrasAuthors: Kai Lorentz
Author institution: Fachbereich Mathematik, Johannes Gutenberg Universitaet, 55099 Mainz, Germany and Universidad del Norte, Departamento de Matematicas, Barranquilla, Colombia (South America)
Summary: We show that, given a Ψ∗-algebra A⊆L(H), H a Hilbert space, and an operator J∈A which is a Jordan operator of L(H), then J also admits a Jordan decomposition within mathcalA. The constructive proof of this fact indicates that the structure of the projections of a Ψ∗-algebra is very rich. We use this construction of obtain local similarity cross sections for Jordan elements J∈A within the Ψ∗-algebra A.
Contents Full-Text PDF